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Abstract

The skill of proxy-based reconstructions of Northern hemisphere temperature is re-
assessed. Using an almost complete set of proxy and instrumental data of the past
130 years a multi-crossvalidation is conducted of a number of statistical methods, pro-
ducing a distribution of verification skill scores. The scores show considerable variation5

for all methods, but previous estimates, such as a 50% reduction of error (RE ), appear
as outliers and more realistic estimates vary about 25%. It is shown that the overesti-
mation of skill is possible in the presence of strong persistence (trends). In that case,
the classical “early” or “late” calibration sets are not representative for the intended (in-
strumental, millennial) domain. As a consequence, RE scores are generally inflated,10

and the proxy predictions are easily outperformed by random-based, a priori skill-less
predictions.

To obtain robust significance levels the multi-crossvalidation is repeated using pre-
dictors based on red noise. Comparing both distributions, it turns out that the proxies
perform significantly better for almost all methods. The nonsense predictor scores do15

not vanish, nonetheless, with an estimated 10% of spurious skill based on representa-
tive samples. I argue that this residual score is due to the limited sample size of 130
years, where the memory of the processes degrades the independence of calibration
and validation sets. It is likely that proxy prediction scores are inflated correspondingly,
and have to be adjusted further.20

The consequences of the limited verification skill for millennial reconstructions is
briefly discussed.

1 Introduction

Several attempts have been made to reconstruct the millennial history of global or
Northern hemisphere temperature (NHT) by way of proxy information (Overpeck et al.,25

1997; Jones et al., 1998), (Mann et al., 1998, henceforth MBH98), (Mann et al., 1999;
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Crowley and Lowery, 2000; Briffa, 2000; Briffa et al., 2001; Esper et al., 2002; Moberg
et al., 2005). Since past variability is essential for the understanding of, and attribut-
ing forcing factors to the present climate some of these reconstructions have played a
prominent role in the last report of the IPCC (IPCC, 2001). This was followed by an
intense debate about the used data and methods (McIntyre and McKitrick, 2003; von5

Storch et al., 2004), (McIntyre and McKitrick, 2005a, henceforth MM05), (Rutherford
et al., 2005; Mann et al., 2005; Bürger and Cubasch, 2005; Huybers, 2005; McIn-
tyre and McKitrick, 2005b; Bürger et al., 2006; Wahl et al., 2006; Wahl and Ammann,
2006). While that debate mostly turned on the variability and actual shape of the re-
constructions (the “hockey stick”) the aspect of verification has not found a comparable10

assessment.
In the above models (that term used informally here to mean any empirical scheme),

a limited number of proxies – usually in the order of several dozens – serve as pre-
dictors, either for the local temperature itself or for some typical global pattern of it.
The models are defined/calibrated in the overlapping period of instrumental data, and15

predicted back to those years of the past millennium where proxies are available but
temperature observations are not. Calibrating is done, in one way or another, by opti-
mizing the model skill for a selected sample (the calibration set) and is almost certainly
affected by the presence of “sampling noise”. This renders the model imperfect, and its
“true” skill is bound to shrink. But it is this skill that is relevant when independent data20

are to be predicted (cf. Cooley and Lohnes, 1971).
Instrumental temperatures are available only back until about 1850. Therefore, the

period of overlap is just a small fraction of the intended millennial domain. It is evident
that empirical models calibrated in that relatively short time span (or even portions of it)
must be taken with great care and deserve thorough validation. This applies even more25

since proxy and temperature records in that period are strongly trended or persistent,
which considerably reduces the effective size of independent samples that are available
to fit and verify a model.

It is therefore essential to find robust estimates of the predictive model skill, as a ba-
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sis for model selection as well as for the general assessment of the resulting tempera-
ture reconstructions. Besides analytical approaches to estimate the true predictive skill
from the shrinkage of the calibration skill (Cattin, 1980; Raju et al., 1997) various forms
of cross validation are utilized, where skill is accordingly being refered to as cross-
validity (see below). Simple cross validation (Mann et al., 1999; Cook et al., 2000;5

Luterbacher et al., 2002; Guiot et al., 2005, MBH98) proceeds as follows: From the pe-
riod of overlapping data with both proxy and temperature information a calibrating set
is selected to define the model. This model is applied to the remaining independent set
of proxy data (as a guard against overfitting), and modeled and observed temperature
data are compared. A more thorough estimate, called double cross validation, is ob-10

tained by additionally swapping calibrating and validating sets (Briffa et al., 1988, 1990,
1992; Rutherford et al., 2003, 2005). Multiple cross validation (“multi-crossvalidation”)
using random calibration sets (Krus and Fuller, 1982) is a form of bootstrapping (Efron,
1979; Efron and Gong, 1983) that, to my knowledge, has been applied only once (Fritts
and Guiot, 1990), in the context of a single site study with rather moderate trends. In15

this study, that approach will be applied to the NHT.
Multi-crossvalidation makes explicit a basic principle of statistical practise: that skill

estimates are always affected by random properties of the sample from which they were
derived. In other words: that the skill of a model, be it calibration or validation skill, is
a random variable. Accordingly, picking out of several alternatives the best scoring20

version as the “true” model is bound to introduce a sampling bias and, moreover, as
has been pointed out elsewhere (cf. Bürger et al., 2006), basically renders the model
unverified. This equally applies to any other possible variation in the model setting, as
long as there is no a priori argument against its use.

Like any bootstrapping, multi-crossvalidation is blind to any predefined (temporal)25

structure on contiguous calibration or validation periods, such as the 20th century
warming trend, and will pick its sets purely by chance. This appears to entirely conflict
with a dynamical approach, since any “physical process” that one attempts to reflect
(cf. Wahl et al., 2006) is destroyed that way. However, empirical models of this kind do
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in no way contain or reflect dynamical processes beyond properties that can be sam-
pled in instantaneous covariations between the variables. The trend may be an integral
part of such a model, but only as long as it represents these covariations.

To estimate whether a verification score represents a significantly skillful prediction it
must be viewed relative to score levels attained by skill-less, or “nonsense”, predictions.5

This is necessary because such predictions, in fact, may attain nonzero values for
some of the scores. Inferences based on nonsense (“spurious”, “illusory”, “misleading”)
correlations turn up since the first statistical measures of association came to light
(Pearson, 1897; Yule, 1926), and are a typical byproduct of small samples; see also
Aldrich (1995).10

There is some analogy to classical weather forecasting where climatology and per-
sistence serve as skill-less predictions whose scores are, especially in the case of
persistence, not so easy to beat. While the notion of a skill-less prediction is common
sense in weather forecasting, it is the subject of considerable confusion and discus-
sion in the field of climate reconstruction. To give an example: for the reduction of15

error (RE , see below) in NHT reconstructions, MBH98 and MM05 report the level of
no skill to be as different as 0% and 59%, respectively. On this background, the use-
fulness of millennial climate reconstructions, such as MBH98 with a reported RE of
51%, depends on the very notion of a nonsense predictor. This confusion evidently
requires a clarification of terms. Towards that goal, the study begins by analyzing and20

discussing a very basic example of a nonsense prediction with remarkable RE scores.
This is followed by a more refined bootstrapping and significance analysis, with models
that are currently in use for proxy reconstructions. Having obtained levels of skill and
significance the consequences for millennial applications are reflected.

2 Skill calculations, and shrinkage25

The study is based on proxy and temperature data that were used in the MBH98 re-
construction of the 15th century. Specifically, the multiproxy dataset, P, consists of the
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22 proxies as described in detail in the MBH98 supplement. To meet the bootstrap-
ping conditions of a fixed set of model parameters, the 219 temperature grid points, T ,
are used that are almost complete between 1854 and 1980, and which were used by
MBH98 for verification (see their Fig. 1). This gives 127 years of common proxy and
temperature data. Note that the proxies represent a typical portion of what is available5

back to AD 1400, showing a large overlap with comparable studies (cf. Briffa et al.,
1992; Overpeck et al., 1997; Jones et al., 1998; Crowley and Lowery, 2000; Rutherford
et al., 2005). Other studies, such as Briffa et al. (2001) or Esper et al. (2002), relied on
these proxies as well but processed them differently.

The verification measures in the above studies are usually borrowed from the verifi-10

cation of classical weather forecasting, such as RE or simple correlation. RE relates
the squared model error to the squared anomalies from the climatological mean, and
thus equals the skill score relative to the climatology forecast (Lorenz, 1956; Wilks,
1995). Note that in this stationary context climatology is usually taken as a constant,
equal for calibration and validation. This changes in Fritts (1976) and Briffa et al. (1988);15

see also Cook et al. (1994) where reference is explicitely made to the calibration (de-
pendent) period mean. For this case, Briffa et al. (1988) note that instationarities, such
as systematic differences between calibration and validation period mean, can arti-
ficially inflate RE scores (see below). To account for this deficiency they suggest a
measure, the “coefficient of efficiency”, CE , that relates the model error explicitely to20

anomalies from the validation period mean, and attribute that measure to Nash and
Sutcliffe (1970). While CE is a useful measure that is now frequently applied, it is not
the “efficiency of a model” as defined by Nash and Sutcliffe (1970), as that happens to
be nothing else than RE , with no explicit mention of a validation period. (Note also that
Cook et al. (1994) incorrectly refer to Nash and Sutcliffe (1970) as a multiple regression25

study.)
Suppose now that we have formulated a statistical model and estimated its parame-

ters from some calibration set. Now true (observed) and modeled NHT, denoted here
by x and x̂ , respectively, are to be compared. For ease of notation I assume in this
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section that validation is done using the entire population, with a population mean of
zero. Denoting the calibration mean by x̄c , RE and CE (in the sense of Briffa et al.,
1988) are given as

RE = 1 −
〈(x̂ − x)2〉
〈(x − x̄c)2〉

; CE = 1 −
〈(x̂ − x)2〉

〈x2〉
, (1)

with brackets indicating expectation. These two scores, along with the correlation be-5

tween true and modeled values, Rc, are now very simply related. Using the following
three forms of relative bias: the calibration mean bias, α = x̄c/

√
〈x2〉 , and the two

biases in mean, β = 〈x̂〉/
√
〈x2〉 , and amplitude, γ =

√
〈(x̂ − 〈x̂〉)2〉/〈x2〉 , one gets (see

Appendix):

CE = γ(2Rc − γ) − β2, (2)10

RE =
CE + α2

1 + α2
. (3)

For example, applying a multiple regression for the complete population gives R2=R2
c

as the squared multiple correlation (coefficient of determination) and, since in that case
α = β = 0 and γ=R, Eq. (2) gives the classical result CE=RE=R2. From Eqs. (2) and
(3) it follows generally CE≤R2

c and CE≤RE . That CE≤R2
c has the important conse-15

quence that skill-less predictions, for which Rc=0, must have CE ≤ 0. Equation (3)
illustrates the dependence of RE on the calibration mean bias, α, and how large α
values inflate that score. For example, if α=1, that is, one standard deviation, a score
of CE=0% would yield RE=50%. This applies, e.g., to time series that exhibit long
memory, such as a trend, be it deterministic or stochastic. For example, Wahl and Am-20

mann (2006) report for their MBH98 emulation RE and CE validation scores of 48%
and –22%, respectively. That discrepancy is solely caused, as calculated from Eq. (3),
by a calibration mean bias of α=1.2. Similar sensitivities are reported by Rutherford
et al. (2005) and Mann et al. (2005).
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For an impression of what skills, and in particular what shrinkage thereof, might
generally be expected let us consider, as the most straightforward statistical model, a
multiple regression of average NHT on p proxies, using N years of calibration. In view
of the intended domain, the full millennium, these N years will always be small and our
estimate imperfect. With increasing sample size, N, and with decreasing number of5

required predictors, p, the model would generally improve. This dependency has been
approximated analytically for the first time by Lorenz (1956). A refined estimate can be
described as follows: Let R̃2 denote the squared mulitple correlation of a model with
p predictors estimated from a sample of N years, adjusted for p (cf. Seber and Lee,
2003). From that, an unbiased estimate of the squared correlation to be expected from10

a prediction is calculated as (Nicholson, 1960; Cattin, 1980):

R̂2
c =

(N − 1)R̃4 + R̃2

(N − p)R̃2 + p
(4)

This estimate of R2
c , also called the cross validity, thus describes the shrinkage in

skill that is to be expected for predictions of a model estimated from N years and p
predictors, having an adjusted calibration skill of R̃2. The dependence of R̂2

c on R̃2 is15

shown in Fig. 1 for the P and T setting with N=127 and p=22. Even with very large
multiple correlations the cross-validity remains quite moderate, so that, for example,
to achieve R̂2

c=50% one already needs R̃2=80%. Conversely, a score of R̃2=36%, as
for regressing NHT from the full instrumental period, dramatically shrinks to a cross
validity of only 6%.20

Equation (4) applies to models estimated by ordinary least squares and thus to all
reconstructions (“predictions”) that are based on some form of multiple regression. It
should illustrate the order of magnitude that is to be expected from shrinking, given a
ratio of predictors and sample size that is typical for millennial climate reconstructions.
Estimates based on multi-crossvalidation shall be provided in §5.25
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3 The trivial NHT predictor

Having studied the close relation between RE and CE via the calibration mean bias,
α, let us turn our attention now to the possible causes of such bias, using a very
basic example. Figure 2 shows the average NHT as estimated from the set of 219
temperature grid points, T . There is an obvious imbalance between the early and the5

late half of the period: while colder, even cooling conditions prevail in the early portion,
much warmer conditions, initiated by a strong positive trend between 1920 and 1940,
dominate the second half. Along with NHT, the linear model is plotted that results from
regressing the late portion (1917–1980) against a very simple predictor: the series
of calendar years. I will call this the trivial model or trivial predictor. This is in effect10

nothing more than fitting a linear trend to that portion. And as a positive trend, the
trivial model predicts colder conditions for the past earlier portion. While this does not
seem to be an overwhelming performance, the model attains for that part (1854–1916)
a verification RE score of 56%! Recalling that RE measures the relative improvement
to the climatology forecast, x̄c , indicated by the zero line, the trivial model outperformes15

that forecast easily by simply predicting colder conditions.
On the other hand, the trivial prediction attains a CE of –70%. According to Eq.

(3), this large discrepancy is caused by the enormeous bias in the calibration mean of
α=1.7 standard deviations (recall that α=1.2 from the last section is based on a 1902–
1980 calibration period). At this point it is important to understand what – besides the20

presence of the overall trend – leads to that bias. The trend is obviously only effective
because of the clean temporal separation of calibration and validation sets. Large
values of α, and thus high RE scores, are obtained because of a) a positive trend
in the late calibration and b) negative anomalies in the early validation. In general, it
needs a calibration trend of the same sign as the mean difference between late and25

the early portion.
To clarify the interplay between trend and the degree of temporal separation the

following Monte Carlo exercise is performed. Starting from the original partition with
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the 1917–1980 (1854–1916) late calibration (early validation) period, single calibration
and validation years are iteratively swapped, the latter being picked randomly, and a
regression model is calibrated. After a certain amount of swappings, here 100, the ini-
tial separation is lost and calibration and validation years are equally distributed. Each
of the generated configurations is now once more “mirrored” by exchanging calibra-5

tion and validation sets. For each step, the individual degree of separation can be
measured, for example, by the relative difference

degree of separation =
T̄c − T̄v

T̄late − T̄early

(5)

where T̄ indicates the mean of the respective calendar years (with subscripts c and v
indicating calibration and validation, respectively). In each step the verification scores10

RE and CE of the corresponding model are calculated, relating it to the degree of
separation. Each single relation is, however, bound to be noisy due to the random
selections of calendar years. The above is therefore repeated 500 times to study the
average behavior, as shown in Fig. 3. It shows a smooth dependence of the average
RE and CE values on the degree of temporal separation. Both scores show opposite15

behavior, with RE preferring positive and CE negative values. RE values rise from
about 30% for the full mixture to almost 60% for the full separation of the late calibration,
while the early calibration shows much lower scores due to the missing, or negative,
trend there. CE is more symmetric about the full mixture. There, CE nearly equals
RE , while it strongly decreases to about –50% at both ends of the full separation. It is20

thus found that a trend creates enormeous RE scores, but at least half of it is due to
the particular selection of calibration and validation sets.

The statistics of each single calibration set is now, with varying degree, representa-
tive of the full set (population). As a simple measure of that representativeness one
can, for example, test the hypothesis that the NHT values from the calibration and25

those of the full set are equally distributed, using the Mann-Whitney (ranksum) test,
and take the resulting p-value. Accordingly averaged over the 500 realizations one
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finds, not surprisingly, a strong dependence of that index on the degree of separation
(see Fig. 3). It is symmetric about zero separation, i.e. full mixture, with a maximum
attained there and calibration sets that are representative. At both ends, under full sep-
aration, the values are practically zero and the calibration sets not representative. It is
at these minima where both scores, RE and CE , happen to show the most extreme5

values.
Note that this representativeness is closely related to the missing-at-random (MAR)

criterion that is important for the imputation of missing data and algorithms such as EM
and RegEM (see below; cf. Rubin, 1976; Little and Rubin, 1987). It is also relevant for
the extrapolation argument given by Bürger and Cubasch (2005).10

One could have used other predictors, such as, for example, the number of reporting
stations for the temperature grid points (which scores 35% RE for the late calibration).
They will give similar results as long as the predictor contains a trend. In view of the
intended time span – the full millennium – however, such simple, trend-based predictors
are obviously not useful as they would just extrapolate the trend backwards into the15

millennium and produce unrealistic cooling. Hence, at least in this simple case not
much useful information is to be expected from the RE scores.

I will now turn to “real” predictors, that is, proxy information made up of tree-rings,
corals, ice cores, etc., and the more sophisticated empirical models that make use of
them.20

4 Reconstruction flavors

Several statistical methods exist or have extra been developed to derive millennial NHT
from proxy information. They are distinguished by using or not using a number of
independent options in the derivation of the final temperature from the proxies. These
options mainly pertain to the specific choice of the preprocessing, the statistical model,25

and the postprocessing.
The methods basically fall into two categories: those which employ a transfer func-
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tion and those which employ direct infilling of the missing data. In the first approach,
the heterogeneous proxy information is transformed to a temperature series by means
of a transfer function that is estimated from the period of overlapping data. In the sec-
ond approach, data are successively infilled to give a completed dataset that is most
consistent (see below) with the original data. The transfer function approach uses ei-5

ther some a priori weighting of the proxies, based on, e.g., areal representation, or a
weighting directly fitted from the data, that is, multiple regression. To reduce the num-
ber of weights in favor of significance, several filtering techniques can be applied, such
as averaging or EOF truncation on both the predictor (Briffa et al., 1988, 1992) and the
predictand side (MBH98; Evans et al., 2002; Luterbacher et al., 2002).10

4.1 Preprocessing (PRE)

Besides using
1) NHT directly as a target, that is, calibrating the empirical model with the NH mean

of the T series, so that no spatial detail is modeled at all,
intermediate targets can be defined, as follows:15

2) PC truncation. Here a model is calibrated from the dominant principal components
(PCs) of T , and a hemispheric mean is calculated from their reconstruction. This is
applied by MBH98, who have used a single PC. To be compatible with that study I also
used only one PC (explaining about 20%–30% depending on the calibration set).

3) full set. The third possibility, applied by Mann and Rutherford (2002); Rutherford20

et al. (2003, 2005); Mann et al. (2005), does not apply any reduction at all to the target
quantity, treating the entire set of temperature grid points (more than 1000 in those
studies) as missing. In our emulation, the full set T of 219 temperature grid points is
set to missing. From the reconstructed series the NH mean is calculated.
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4.2 Statistical method (METH)

The reconstruction of temperatures from proxies can be viewed in the broader context
of infilling missing values. The infilling is done by using either a transfer function be-
tween knowns and unknowns that is fitted in the calibration (1–4 below), or in a direct
way using iterative techniques (5, 6):5

1) Classical (forward) regression. Between the known P and unknown T quantities,
a linear relation R is assumed, as follows:

T = RP + ε, (6)

where ε represents unresolved noise. The matrix R = Σ−1
P ΣPT, with Σxy denoting the

cross covariance matrix between x and y (taking Σx = Σxx), is determined by least10

squares (LS) regression, with T assumed to be noisy.
2) Inverse (backward) regression. This method is applied by MBH98. It also uses

a linear model as in 1), but now P is assumed noisy, leading to the LS estimate RI =
Σ+

TPΣT, (“+” denoting pseudo inverse).
3) Truncated total least squares (TTLS). This form of regression, in combining 1)15

and 2), assumes errors in both quantities P and T (cf. Golub and Loan, 1996). The 10
major singular values were retained.

4) Ridge regression. As 1) , but with an extra offset given to the diagonal elements
of the (possibly ill-conditioned) matrix ΣP used as regularization parameters (Hoerl,
1962).20

5) EM. Unlike using a fixed transfer function defined from a calibration set, there are
methods that exploit all available information when infilling data, including those from
a validation predictor set. A very popular method uses the Expectation-Maximization
(EM) algorithm, which provides maximum-likelihood estimates of statistical parameters
in the presence of missing data (Dempster et al., 1977). EM is applied using the more25

specialized regularized EM algorithm, RegEM (see below), with a vanishing regular-
ization parameter.
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6) RegEM. RegEM has been invented to utilize the EM algorithm for the estimation
of mean and covariance in ill-posed problems with fewer cases than unknowns (cf.
Schneider, 2001). It was intended for, and first applied to, the interpolation/completion
of large climatic data sets, such as gridded temperature observations, with a limited
number of missing values (3% in Schneider, 2001). The technique was then extended5

to proxy-based climate reconstructions (with a rate of missing values easily approach-
ing 50%) and seen as a successor of the MBH98 method (Mann and Rutherford, 2002;
Rutherford et al., 2003, 2005; Mann et al., 2005). Note, however, that millennial appli-
cations utilize rather few proxies, so that the infilling problem is no longer ill-posed and
the much simpler EM could have been used. Moreover, the reported millennial verifica-10

tion RE of RegEM is less than that of the original MBH98 (cf. Rutherford et al., 2005).
The performance of EM and RegEM are here compared for the first time. Details on
RegEM are given in the Appendix.

4.3 Postprocessing (POST)

In applications (e.g. verifications) the output of the statistical model is either taken 1) as15

is or 2) rescaled to match the calibration variance (cf. Esper et al., 2005; Bürger et al.,
2006). Note that this operation increases the expected model error.

As all of PRE, METH, and POST represent independent groups of options, they can
be combined to form a possible reconstruction “flavor” (cf. Bürger et al., 2006). As
a reference, each such flavor receives a code ϕ in the form of a triple from the set20

{1,2,3}×{1,2,3,4,5,6}×{1,2}, indicating which options were selected from the 3 groups
above. This defines a set of 3×6×2=36 flavors. For example, the MBH98 method
corresponds to flavor ϕ=222 and Rutherford et al. (2005) to ϕ=161. Table 1 illustrates
the various settings.
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5 Multi-crossvalidation of NHT reconstructions

I consider 300 random partitions π of the set I= {1854, ...,1980} of calendar years,

I = Cπ ∪ Vπ, (7)

into calibration and validation sets Cπ and Vπ, where both sets are roughly of equal size
(|Cπ |=64 and |Vπ |=63). For any of the 36 flavors, ϕ, it is now possible to calibrate an5

empirical model, with corresponding scores REϕ(π) and CEϕ(π). REϕ(π) and CEϕ(π)
thus appear as realizations of random variables REϕ and CEϕ, with corresponding dis-
tributions. Along with the 300 random partitions I also consider the two complementary
partitions with full temporal separation.

The distributions of REϕ and CEϕ are depicted in Fig. 4 as a boxplot. For most fla-10

vors the distributions show a remarkable spread, with minimum and maximum (low and
high 10%-quantiles) easily departed by more than 50% (20%) of skill. Moreover, be-
tween the flavors the distributions are quite different. For example, the flavors ϕ=161
and ϕ=162 are merely distinguished by the use of rescaling. Their performance, how-
ever, is grossly different. This applies likewise to the flavors ϕ=141/2 and ϕ=151/2,15

so that at least in these cases skill is strongly degraded by rescaling (note, however,
ϕ=261/2). While there is so much spread in skill within and between the flavors the
distributions themselves are quite similar for both scores REϕ and CEϕ. This indicates
that, in fact, most calibration/validation partitions are temporally well mixed and REϕ
and CEϕ measure the same thing (see §3).20

The skill varies, but it varies on rather low levels. The 90% quantile hardly exceeds
the 30% mark, and the highest median is REϕ=26.5% and CEϕ=24.6% for ϕ=262.
Generally, flavors of the form 2xx, i.e. those predicting PC1 of NHT, perform much bet-
ter, with almost all medians above 20%. The other flavors are much more variable,
partly caused by the degradation from rescaling mentioned above. An exception are25

the flavors of the form x61 which show remarkably little variance (albeit only moderate
scores). This is understandable insofar as RegEM, unlike the other flavors, depends on
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the particular calibration set only in terms of the predictand (utilizing the full instrumen-
tal period for the predictors). This would also apply to the EM flavors (x51), but they are
probably more susceptible to overfitting. Note that the flavor ϕ=311, which has shortly
been touched in §2 to exemplify shrinking, scores very little, with RE and CE values
below 5%. This is about the same order of magnitude as the estimate obtained from5

Eq. (4).
The mindful reader has noticed that some flavors, such as ϕ=111 and ϕ=311, have

identical distributions. In fact, for direct regression, with a linear dependence of the
estimated model on the predictand, cf. §4.2, they are equivalent with respect to NHT
and thus redundant. (Note that the RegEM flavors ϕ=161 and ϕ=361 are similar as10

well.)
The triangles in the figure represent the two calibrations with full temporal separation,

i.e. the periods 1917–1980 (upper triangle) and 1854–1916 (lower triangle). They are
more comparable to estimates of previous studies and obviously assume the role of
outliers, in a positive sense for RE and in a negative one for CE . While several RE15

values approach 50% the CE values are negative throughout. Models with trended and
fully separated calibration sets are thus rewarded with high RE scores but penalized
with low CE scores.

Based on such levels of performance it is difficult to declare one specific flavor as
being the “winner” and being superior to others. Just from the numbers, the flavor20

ϕ=262 gives the best RE perfomance (see above). It predicts PC1 using RegEM and
rescaling. But it is only marginally better than, e.g., the simpler variant 211 (simple
forward regression, with median 23.4%). Note that the flavor 161 was promoted by
Mann et al. (2005) and earlier to replace the original MBH98 flavor 222. From the
current analysis, this cannot be justified (RE median of 21.8% compared to 25.9%).25

This is somewhat in agreement with Rutherford et al. (2005) who report a millennial
RE of 40% (46% for the “hybrid” case), as compared to the 51% of MBH98. Moreover,
for the late calibration the 161 flavor is particularly bad (REϕ=11.9%); it improves,
nonetheless, when calibrating with the “classical” calibration period 1902–1980 (28%).

264

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/249/2007/cpd-3-249-2007-print.pdf
http://www.clim-past-discuss.net/3/249/2007/cpd-3-249-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
3, 249–284, 2007

On the verification of
climate

reconstructions

G. Bürger

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

6 Significance

There is an ongoing confusion regarding the notion of significance of the estimated
reconstruction skill. For the same model (the one used by MBH98, here the emulated
flavor 222), MBH98 (resp. Huybers, 2005) and McIntyre and McKitrick (2005b) report a
99% significance level for RE as different as 0% and 54%! Hence, with a reported RE5

of 51% the model is strongly significant in the first interpretation and practically useless,
i.e. indistinguishable from noise, in the latter. And what might be even more intriguing:
The trivial model of §3 with an RE score of 56% turns out to be significantly skillful
under both interpretations. Obviously, the notion of “being significant”, or of being a
“nonsense predictor”, deserves a closer look.10

A major difference in the two approaches is the allowance for nonsense regressors
for the significance estimation, because only that yields higher scores. Now even in the
well-mixed, representative case the trivial predictor scored about 20% in both RE and
CE , which would still be significantly skillfull under a significane level of 0%. To avoid
this, nonsense regressors must therefore be allowed. On the other hand we have seen15

how the temporal separation produces non-representative samples, and creates RE
“outliers” of up to 60%. The proposed significance level of RE=54%, which is based
on these outliers, is thus equally inflated and must be replaced by something more
representative.

A crucial question is: What kind of nonsense predictors should be allowed? – To20

derive a statistically sound significance level requires a null distribution of nonsense
reconstructions. Now one can think of all sorts of funny predictors, things like calen-
dar years, Indias GDP, the car sales in the U.S., or all together, etc., but that will not
make up what mathematically is called a measurable set (to which probabilities can
be assigned). Hence, a universal distribution of nonsense predictors does not exist.25

– A more managable type of nonsense predictors are stochastic processes generated
from white noise, such as AR, ARMA, ARFIMA, ..., (cf. Brockwell and Davis, 1998).
Once we fix the number of regressors, the type of model, say ARMA(p,q), and the set
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of parameters, a unique null distribution of scores can be obtained from Monte Carlo
experiments. From these, a significance level can be estimated and compared to the
original score of the reconstruction. The only problem is then that each of the specified
stochastic types creates its own significance level.

It was perhaps this dilemma that originated the debate about the benchmarking of5

RE , specifically, estimating the 99% level of significance, REcrit. In the literature, one
finds the following approaches:

1. (MBH98) simple AR(1) process with specified memory: REcrit = 0%;

2. (MM05) inverse regression of NHT on a red noise predictor, estimated from one
of the 22 proxies (the dominant PC of North American tree ring network): REcrit =10

59%;

3. (Huybers, 2005) as 2, with rescaling: REcrit = 36% using red noise version from
accompanying matlab code (10 000 samples);

4. (McIntyre and McKitrick, 2005b) as 3, but with 21 additional (uncorrelated?) white
noise predictors: REcrit = 54%.15

One might now feel inclined to provide the “correct” or “optimum” way of repre-
senting the proxies as a stochastic process. If I now add

5. as 4, but with all noise predictors (not only PC1) estimated from the original prox-
ies,

the series of benchmarking attempts from 1 to 5 would in fact slowly convergence to20

what MBH98 and similar studies should be compared to. But so much is not required.
One can and must only provide a realistic lower bound on the level of significance,
may it come from whatever stochastic process. With regard to 5, a benchmark has
not been estimated so far, and will not be estimated here. The lesson of §3 is that all
benchmarks 1–4 are inflated by the temporal separation of calibration and validation25

sets, and more realistic values are to be expected from multi-crossvalidation.
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For each of the 36 flavors I have therefore repeated the analysis of §5, with the
proxies being replaced by red noise series. Specifically, for each proxy a stochastic
long-memory process is generated whose memory parameter, d , is estimated from the
proxy using log-periodogram regression (Geweke and Porter-Hudak, 1983; Brockwell
and Davis, 1998). To obtain more robust estimates of d I used here, like MM05, the full5

proxy record from 1400 to 1980; the corresponding estimates varied between d=−0.17
and d=0.85. Note that the log-periodogram estimation is slightly different from the
method suggested by Hosking (1984) and applied by MM05. Neither method is perfect,
as both rest on various approximations (cf. Bhansali and Kokoszka, 2001) that provide
little more than a rough guess of what the “true” long-memory parameter might be. But10

again, such kind of truth is not required.
The noise generation was redone in each of the 300 iterations (to remove sampling

effects). The result is shown in Fig. 5. Like in Fig. 4, RE and CE values are sim-
ilar. All scores are smaller compared to the corresponding proxy predictions, with a
greater spread per flavor. They are nonetheless not neglegible. Analoguously to the15

proxies, the scores are generally better for flavors of the form 2xx, with median levels
varying about 10%. For each flavor, also included are the experiments with full tem-
poral separation. Some of the RE scores exceed 50%, like the trivial predictor (54%
for ϕ=311). As an example, Fig. 6 shows the distribution of the 300 predictions for the
flavor ϕ=222, in terms of validation RE and in comparison to the proxy predictions.20

We clearly see different distributions, the nonsense predictions being more spread and
generally shifted to smaller RE values, varying roughly about 20%. Note that this is
about the score of the trivial predictor for representative calibration sets, depicted in
Fig. 3. There are nonetheless outliers with very good scores (∼45%). These are possi-
ble, as we saw, if the predictors are sufficiently persistent, and calibration and validation25

sufficiently separated in the time domain.
The degree to which the proxy predictions outperform their nonsense pendants is

depicted in the last Fig. 7; it shows for each flavor the respective Mann-Whitney test
statistic. Except for the flavors ϕ=13x the values are well beyond the 99% level of the
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standard normal null distribution of the test (obtained if both samples come from the
same population). The highest values are, like in Fig. 4, attained by the 2xx flavors that
are based on predictand EOF filtering. The x61 flavors, i.e. those using RegEM, are
also large, which is possibly due to the overall reduction in RE spread for those flavors
(see above).5

Now one thing is still unresolved: Why do the nonsense predictions have non-
vanishing score even for the well mixed, representative samples? – A nonsense predic-
tion has, by definition, no skill. In an ideal world, which among other things has infinite
samples and truely independent validation, it would yield a cross-validity of Rc = 0 and
thus, using Eq. (2), CE≤0 (see §2); and RE would at best be artificially inflated via the10

α bias, from Eq. (3). Positive scores of nonsense predictions are therefore an artefact
of the limited sample of 127 cases/years. In fact, in the finite case, calibration and vali-
dation sets are never fully independent; they become more and more dependent if the
memory of the time series gets comparable to the series length. The most plausible
explanation for the spurious skill is therefore: that the validity of a regression will be15

partly inherited by the “independent” verification period and create skill there.
This argument applies equally to the proxy predictions. Therefore, about 10% of the

25% skill are likely caused by spurious skill due to memory effects.

7 Conclusions

The analysis poses three quesions:20

1. How do we interpret the estimated levels of reconstruction skill?

2. How do we interpret the resulting spread in that skill?

3. How are possible answers to 1. and 2. affected by the significance analysis?

ad 1: It was found that realistic estimates of skill vary about 25%, equally for RE
and CE . The results were obtained using a well confined testbed of proxy and tem-25
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perature information through 127 instrumental years, with almost no gaps. The proxies
represent a standard set of what is available back to AD 1400. The set of tempera-
ture grid points does not cover the entire globe, and its areal averages serve only as
approximations to the full NHT average; but it is about the largest subset that is rig-
orously verifiable. On this background, previous estimates of NHT reconstruction skill5

in the range of RE=50% appear much too large. They are inflated by the use of a
non-representative calibration/validation setting in the presence of trended data.

ad 2: Crossvalidation of any type (single, double, multi) is a means to estimate
the distribution of unknowns (here: the reconstruction skill). As there is no a priori
criterion to prefer a specific calibration set, all such sets receive equal weights before10

and after the analysis (this is somewhat in conflict with Rutherford et al. (2003) who
seem to prefer one set because of its validation skill). The estimated distributions were
quite similar for RE and CE , indicating that both scores actually measure the same
thing. The considerable spread of most distributions simply reflects our limited ability
to estimate skill any better, based on a sample size of 127 cases/years, and on an15

effective sample size that is even less, due to persistence.
ad 3: Reconstructions based on real proxies significantly outperform the chosen

class of nonsense predictions (based on stochastic long-memory processes). It is
unknown whether they outperform any such class, as strong persistence, like in the
trivial predictor, enhances scores. Most flavors, moreover, reveal a non-vanishing score20

for the nonsense predictors, varying about 10% for many flavors. This was attributed to
the degraded independence of the finite validation period by memory effects, allowing
portions of the calibration information to drop into the validation. As this is equally true
for the proxy predictions, a significant amount of the estimated verification skill is likely
to be spurious, and further adjustments are necessary.25

It is unknown how such an adjustment should be done numerically, producing a final
overall verification skill that for the best flavors is somewhere between 15% and 25%,
with large uncertainties. With respect to applications, that is, reconstructions, the main
question is, however: Are these levels sufficient to decide the millennial NHT contro-
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versy? – 25% RE translates to an amplitude error of
√

100−RE∼ 85%. If one were
to focus the controversy into the single question: Was there a hemispheric Medieval
Warm Period and was it possibly warmer than recent decades? – that question cannot
be decided based on current reconstructions alone, at least not in a verifiable sense.

Appendix A5

RE , CE , and Rc

Suppose true (verification) and predicted values are given by x and x̂, respectively.
Without loss of generality let us assume 〈x〉=0 . There are now three forms of relative

bias, the calibration mean bias, α = x̄c√
〈x2〉

, and the two biases in mean, β= 〈x̂〉√
〈x2〉

, and10

amplitude, γ=
√

〈(x̂−〈x̂〉)2〉
〈x2〉 . Using these, we have

CE = 1 −
〈(x̂ − x)2〉

〈x2〉

=
〈x2〉 − 〈x̂2〉 + 2〈x̂x〉 − 〈x2〉

〈x2〉

=
2〈x̂x〉 − 〈x̂2〉

〈x2〉

=
2〈(x̂ − 〈x̂〉)x〉 − 〈(x̂ − 〈x̂〉)2〉 + 2〈x〉〈x̂〉 − 2〈x̂〉2 + 〈x̂〉2

〈x2〉
15

=
2〈(x̂ − 〈x̂〉)x〉 − 〈(x̂ − 〈x̂〉)2〉

〈x2〉
−

〈x̂〉2

〈x2〉
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= 2
〈(x̂ − 〈x̂〉)x〉√
〈(x̂ − 〈x̂〉)2〉〈x2〉

√
〈(x̂ − 〈x̂〉)2〉/〈x2〉 − 〈(x̂ − 〈x̂〉)2〉/〈x2〉 − 〈x̂〉2/〈x2〉

= γ(2Rc − γ) − β2 (A1)

with Rc denoting the correlation between predicted and true values. Now we have

RE = 1 −
〈(x̂ − x)2〉
〈(x − xc)2〉

=
〈x2〉 − 2〈xxc〉 + 〈x2

c〉 − 〈x̂2〉 + 2〈x̂x〉 − 〈x2〉
〈x2〉 − 2〈xxc〉 + 〈x2

c〉
5

=
2〈x̂x〉 − 〈x̂2〉 + x2

c

〈x2〉 + 〈x2
c〉

=
CE〈x2〉 + x2

c

〈x2〉 + 〈x2
c〉

=
CE + α2

1 + α2
(A2)

Note that the 4th line of Eq. (A2) is an immediate consequence of the 3rd line of
Eq. (A1).10

Appendix B

RegEM configuration

To control the iteration, RegEM has a number of configuration switches that can be
adjusted. The following settings gave satisfactory convergence results for most of the15
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experiments. I used: multiple ridge regression as a regression procedure; regular-
ization parameter determined from general cross validation (GCV); minimum relative
variance of residuals: 5e-2; stagnation tolerance: 3e-5; maximum number of iterations:
50; inflation factor: 1.0; minimum fraction of retained variance: 0.95. This latter setting
is borrowed from Rutherford et al. (2003) who argue that the GCV regularization esti-5

mate is too crude in the presence of too many unknowns. This was true here as well. In
fact, using the GCV estimate for the flavors ϕ=1xx resulted in RegEM reconstructions
that were hardly distinguishable from the calibration mean.
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Table 1. Table of the 3×6×2=36 reconstruction flavors.

PRE METH POST

219 grid points forward regression no rescaling
1 EOF backward regression rescaling

1 global average TTLS
ridge regression

EM
RegEM
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Fig. 1. Dependence of cross validity R̂2
c on adjusted R2 and corresponding shrinkage.
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Fig. 2. NHT observed (thin black line) and predicted from the series of calendar years (blue
line). The model is calibrated in the late portion (1917–1980) and validated in the early portion
(1854–1916), yielding a RE score of 56%. Also depicted is the climatology forecast of the
calibration period which, by definition, scores RE=0 (heavy black line).
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Fig. 3. The dependence of the validation scores RE and CE on the degree of temporal sep-
aration for the simple NHT predictor (see text). For the full separation with a late (1917–1980)
calibration and early (1854–1916) validation RE (solid black) approaches 60%, while the fully
mixed case attains only about 30% RE ; towards early calibration RE rises again to 40% but
then sharply drops to negative values. CE (dashed black) shows somewhat opposite behavior,
with strongly negative values for the full separation and values similar to RE in the mixed case.
Also shown is an index (see text) of the representativeness the corresponding calibration sets
(red).
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Fig. 4. Boxplot of the distribution of RE and CE for each of the 36 flavors, based on 300
resamplings of the calibration/verification period. Each box indicates the 10%, 50%, and 90%
quantile, and the whiskers the minimum and maximum, of the distribution. Also shown are
the scores obtained from the full separation into early (upward triangle) and late (downward
triangle) calibration. For readability, some flavors/experiments are not shown (too negative).
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Fig. 5. As Fig. 4, using nonsense predictors.
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Fig. 6. Histogram of RE from proxy and nonsense prediction using flavor ϕ=222. Proxy
predictions show less spread and generally greater skill. Note, however, that high scores are
also obtained from nonsense predictions.
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Fig. 7. Testing RE scores of proxy vs. nonsense predictions, using Mann-Whitney test, for
all flavors. The null distribution is N(0,1), so that for almost all flavors the real predictions are
significantly better than the nonsense predictors.
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